A New Function Associated with the Prime Factors of ($\left.\begin{array}{c}n \\ k\end{array}\right)$

By E. F. Ecklund, Jr., P. Erdös and J. L. Selfridge

$$
\begin{aligned}
& \text { Abstract. Let } g(k) \text { denote the least integer }>k+1 \text { so that all the prime factors of }\binom{o(k)}{k} \\
& \text { are greater than } k \text {. The irregular behavior of } g(k) \text { is studied, obtaining the following bounds: } \\
& \qquad k^{1+c}<g(k)<\exp (k(1+o(1))) . \\
& \text { Numerical values obtained for } g(k) \text { with } k \leqq 52 \text { are listed. }
\end{aligned}
$$

The prime factors of $\binom{n}{k}$ have been studied a great deal. In a recent paper, Erdös [2] stated several results and unsolved problems on this subject. In this paper, we discuss one of the problems stated there: Denote by $g(k)$ the least integer $>k+1^{*}$ so that all prime factors of $\binom{\rho(k)}{k}$ are greater than k. Determine or estimate $g(k)$.

The behavior of $g(k)$ is surprisingly irregular. We searched for values of $g(k) \leqq$ 2500000 for $2 \leqq k \leqq 100$; the results of this search are reported in Table 1. In reviewing Table 1, we noticed the surprising example $g(28)=284$. This motivated a second search for other such examples with $g(k) \leqq 100000$ and $101 \leqq k \leqq 500$; none were found.

Table 1. Values of $g(k) \leqq 2500000$ for $2 \leqq k \leqq 100$

k	$g(k)$								
		11	47	21	14871	31	341087	41	B
2	6	12	174	22	19574	32	371942	42	96622
3	7	13	2239	23	35423	33	6459	$43 /$	B
4	7	14	239	24	193049	34	69614	45	
5	23	15	719	25	2105	35	37619	46	692222
6	62	16	241	26	36287	36	152188	$47 /$	B
7	143	17	5849	27	1119	37	152189	51	B
8	44	18	2098	28	284	38	487343	52	366847
9	159	19	2099	29	240479	39	767919	$53 /$	B
10	46	20	43196	30	58782	40	85741	100	B
	$B: ~ g(k)$ exceeds the search bound of 2500000								

The following conjectures on $g(k)$ all seem certainly true, and perhaps some of them will not be difficult to prove. First, we conjecture
(2)

$$
\begin{align*}
& \limsup _{k \rightarrow \infty} g(k+1) / g(k)=\infty \quad \text { and } \tag{1}\\
& \underset{k \rightarrow \infty}{\lim \inf } g(k+1) / g(k)=0
\end{align*}
$$

[^0]Also, it seems that $g(k)$ is not of polynomial growth-in other words, for every n and $k>k_{0}(n)$,

$$
\begin{equation*}
g(k)>k^{n} \tag{3}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} g(k)^{1 / k}=1 \tag{4}
\end{equation*}
$$

certainly seems to hold, and we expect that

$$
\begin{equation*}
g(k)<\exp \left(c_{1} \pi(k)\right) \tag{5}
\end{equation*}
$$

is true.
We now give lower and upper bounds for $g(k)$. For a lower bound, we show there is an absolute constant $c>0$ such that

$$
\begin{equation*}
g(k)>k^{1+c} \tag{6}
\end{equation*}
$$

We first show that $g(k)>2 k$ (for $k>4$) always holds. By definition, $g(k)>k+1$, and $g(k) \neq 2 k$ since $\binom{2 k}{k}$ is always even. Suppose $g(k)=k+t$ with $1<t<k$. We have $\binom{k+t}{k}=\binom{k+t}{t}$. Ecklund [1] showed that $\binom{k+t}{t}$ has a prime factor not exceeding $(k+t) / 2<k$, the only exception being $\binom{7}{3}$ which corresponds to the case $k=4$, $t=3$. Erdös and Selfridge [2, p. 406] proved that if $m \geqq 2 k$, then $\binom{m}{k}$ always has a prime factor $<m / k^{c}$, for some absolute constant $c>0$. This immediately implies (6).

Next, we give a very crude upper bound on $g(k)$. Denote by L_{k} the least common multiple of the integers $1,2, \cdots, k$ and put $P_{l}=\prod_{p \leq l} p$. Let $N(k, l)=L_{k} P_{l}$. If $n+1$ is any multiple of $N(k, l)$, then

$$
\binom{n}{k}=\left(\frac{m N(k, l)}{1}-1\right)\left(\frac{m N(k, l)}{2}-1\right) \cdots\left(\frac{m N(k, l)}{k}-1\right)
$$

has no prime factors less than l. Thus,

$$
\begin{equation*}
g(k)<N(k, k)=\prod_{p \leq k} p^{\alpha_{p+1}} \tag{7}
\end{equation*}
$$

where $\alpha_{p}=\left[\log _{p} k\right]$. For $k>k_{0}$, this upper bound can be improved a bit. We show

$$
\begin{equation*}
g(k)<k^{2} L_{k} P_{l} \quad \text { with } l=[6 k / \log k] . \tag{8}
\end{equation*}
$$

To prove (8), consider the integers $t L_{k} P_{l}-1$ for $1 \leqq t \leqq k^{2}$. We show that, for at least one of these values of t,

$$
\begin{equation*}
p \nmid\binom{t \mathbf{L}_{k} P_{l}-1}{k} \text { for every } p \leqq k \tag{9}
\end{equation*}
$$

For $p \leqq l$, (9) holds as before. If $l<p \leqq k$,

$$
p \left\lvert\,\binom{ t L_{k} P_{l}-1}{k}\right.
$$

can only hold if there is a $j, 1 \leqq j \leqq k$, for which

$$
\begin{equation*}
t L_{k} P_{l} \equiv j\left(\bmod p^{\alpha_{p}+1}\right) \tag{10}
\end{equation*}
$$

The number of integers t with $1 \leqq t \leqq k^{2}$, for which (10) holds, is at most

$$
\begin{equation*}
k\left(\left[k^{2} / p^{2}\right]+1\right), \text { since } \alpha_{p}=1 \text { for } p>l \tag{11}
\end{equation*}
$$

Thus, by (10) and (11), the number of integers $t, 1 \leqq t \leqq k$, for which (10) holds for some prime $p, l<p \leqq k$, is at most

$$
\begin{equation*}
\sum_{l<p \leqq k} k\left(\left[k^{2} / p^{2}\right]+1\right)<k^{3} \sum_{p>l} 1 / p^{2}+k \pi(k) . \tag{12}
\end{equation*}
$$

It easily follows from the prime number theorem that, for $k>k_{0}$,

$$
\begin{equation*}
\sum_{p>l} 1 / p^{2}<\frac{2}{l \log l}<\frac{1}{2 k} \tag{13}
\end{equation*}
$$

From (12) and (13), for $k>k_{0}$, the number of integers $t, 1 \leqq t \leqq k$, for which (10) holds, is less than $k^{2} / 2+k \pi(k)<k^{2}$. Thus, there is a $t \leqq k^{2}$ with (9) holding for every $p \leqq k$. Thus, $g(k)<k^{2} L_{k} P_{l}$ as stated. The value 6 could be replaced by a smaller constant, but we cannot prove $g(k)<L_{k}$, which seems to hold for all k.

It is well known that $L_{k}<\exp (k(1+o(1)))$ and $k^{2} P_{l}<\exp (o(k))$. Thus, $g(k)<$ $\exp (k(1+o(1)))$. So $g(k)<L_{k}$ should be achievable.

Department of Mathematical Sciences
 Northern Illinois University
 DeKalb, Illinois 60115

[^1]
[^0]: Received May 7, 1973.
 AMS (MOS) subject classifications (1970). Primary 10 H 15.
 *The condition $g(k)>k+1$ was inserted to avoid the special case $k+1=p$, a prime.

[^1]: 1. E. F. Ecklund, Jr., "On prime divisors of the binomial coefficient," Pacific J. Math., v. 29, 1969, pp. 267-270. MR 39 \#5465.
 2. P. Erdös, "Some problems in number theory," in Computers in Number Theory, Academic Press, London, 1971, pp. 405-414.
